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We study the stability of several mesh equidistribution schemes for time-dependent partial 
differential equations in one space dimension. The schemes move a finite difference or tinite 
elcmcnt mesh so thar a given quantity is uniform over the domain. We consider mesh-Inoting 
methods that are based on solving a system of ordinary differential equations for ths mesh 
velocities and show that some of these methods are unstable with respect to an 
equidistributing mesh when the partial differential system is dissipative. Using linear pertur- 
bation tcchniqucs, we are able to develop simple criteria for determining the stability of a par- 
ticular method and show how to construct stable differential systems for the mesh velocities. 
Several examples illustrating stable and unstable mesh motions are presented. t 1Y8b Academic 

Prsss. 1°C 

1. INTRODUCTION 

Many technological situations involve the rapid formation, propagation, and dis- 
integration of small-scale structures. Some examples are shock waves in com- 
pressible flows, shear layers in laminar and turbulent flows, phase boundaries in 
nonequilibrium processes, combustion fronts, and classical boundary layers. With 
increasing complexity of the physical problem, there is an increasing need for 
reliable and robust software tools to accurately and efficiently describe the 
phenomena. Adaptive techniques have been widely used to solve problems in- 
volving ordinary differential equations with rapid transitions, and are thus likely 
candidates for providing the computational methods and codes necessary to solve 
more dificult problems involving partial differential equations. 

Adaptive techniques for partial differential equations can be roughly divided into 
two categories: (i) local refinement methods, where uniform fine grids are added to 
coarse grids in regions where the solution is not adequately resolved, and (ii) 
moving mesh methods, where grids of a fixed number of finite difference cells or 
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finite elements are moved so as to follow and resoive local nonuniformities in the 
solution. A representative sample of both types of methods is contained in Babuska. 
Chandra, and Flaherty [3]. Each technique has its advantages, for exampie. local 
refinement techniques can in principle add enough grids to resolve any fine-scale 
structure, while moving mesh methods are superior at reducing dispersive errors in 
the vicinity of wavefronts (cf. Hedstrom and Rodrigue [ 131). 

In this note, we study the stability of several moving mesh schemes that are based 
on equidistribution, i.e., schemes that move a mesh so that a particular quantity is 
uniform over the domain. More specifically, we consider equidistribution problems 
in one space dimension and determine a mesh (0 = r0 < .x-!(t) < . < .x:~, 1 (7 ! < 
x,~= h) at time t so that 

The positive density or weight function \v(s, I) is usually chosen to be a function of 
the solution of the partial differential system. For example. II’ has been chosen to be 
proportional to the gradient, curvature, combinations of the gradient and cur- 
vature, and the local discretization error of the solution of the partial differential 
equations (cf. Anderson [ 11. Bell and Shubin [S], Davis and Flaherty [7], Dwyer 
[9, lo], Hyman and Naughton [16], Rai and Anclerson [ZO], Smooke and 
Koszykowski 1221, and Thompson [23] ). 

Equidistribution strategies have also been used in codes for variable knot spline 
interpolation (cf., e.g.. de Boor [S] j and for two-point boundary value problems 
(cf. Ascher, Christiansen, and Russell [I’], Lentini and Pereyra [ 171, and Russell 
and Christiansen [I21 ] ). In these cases, it has been shown (cf. de Boor [8] or 
Pereyra and Seweli [IS]) that the task of selecting a mesh to minimize the dis- 
cretization error is asymptotically equivalent (for large N) to equidistributing the 
local discretization error. 

Equidistribution techniques are typically applied to time-dependent problems by 
(i) solving (1.1) simultaneously with the solution of the partial differential 
equations, (ii) extrapolating equidistributing meshes at past time levels to future 
time levels, or (iii) developing a system of ordinary differential equations for? say. 
the mesh velocities, cls,(r)/dt := 2~ t), j = 0, l,..., N. that are equivalent to ( 1.1 j, and 
solving it numerically. Many researchers have reported problems with extrapolating 
equidistributing meshes or with integrating differential equations for the mesh 
velocities. For example, if sufficient care is not exercised. mesh trajectories can leave 
the domain [a, b], cross each other, or oscillate wildly from time step to time step 
(cf. Fig. 3). These events can even occur when the solution of the partial differential 
equations is changing very little. In order to explain these phenomena, we use linear 
perturbation techniques to study the stability of several differential systems for the 
mesh velocities. In particular, we show that an intuitively obvious system that has 
(1.1) as its exact solution is unstable whenever 1~ is a decreasing function of time, 
e.g., when the partial differential system is dissipative. We also show how to 
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stabilize an unstable system and that a differential system for the mesh velocities 
that was suggested by Hyman [ 151 is unconditionally stable to small perturbations 
from an equidistributing mesh. Since many mesh extrapolation schemes are 
asymptotically equivalent (for small time increments) to ordinary differential 
equations for mesh velocities, we would expect our results to also apply to these 
schemes. 

In Section 2 we discuss an algorithm for solving (1.1) at a given time t, in Sec- 
tion 3 we present our stability results for differential systems that approximate (1.1 ), 
and we summarize our findings in Section 4. 

2. AN EQU~DISTRIBUTION ALGORITHM 

The equidistribution problem (1.1 j can most easily be solved by a technique due 
to de Boor [8]. Thus, we let 

T(x, t) = [” w(s, t) ds, a d x d b. 
a 

(2.1) 

Then 

c(t) = (l/N) T(b, t) (2.2) 

and the equidistributing mesh xi(t), j= 0, I,..., N, is determined as the solution of 
the nonlinear system 

qxi(t), t) := T&(t), t) -jc(t) = 0, j = 0, l,..., N. W? 

The equidistribution problem has a nonunique solution whenever 11(x, t) := 0; 
hence, we may expect numerical difficulties when W(X, t) is small on any subinterval 
of [a, b]. This problem is usually handled by imposing a lower bound on W, e.g., it 
is common to replace W(X, t) by W(X, t) + rl. There are many choices for the positive 
parameter q. Davis and Flaherty [7] suggest that ye should be related to the dis- 
cretization error of the numerical method that is being used to solve the partial dif- 
ferential equations. Another popular choice (cf., e.g., Dwyer [9]) is to set rl to 
unity, when the interval [a, b] and IV have been appropriately scaled. Among other 
things, both of these choices insure that the solution of (2.3) is a uniform mesh 
whenever iv is small everywhere on [a, b]. Throughout the remainder of this note, 
we assume that w(x, t) 2 0 for a d x < b, t > 0, with w = 0 only at a finite number of 
isolated points. This is sufficient to guarantee a unique solution of (2.3). 

If W(X, t) is a function of the numerical solution of the associated partial differen- 
tial equations, it will generally only be known discretely. Suppose w is known at the 
points xp, i = 0, I,..., M, then we approximate it between mesh points by a piecewise 
polynomial in .Y and integrate (2.1) to find a piecewise polynomial approximation 
to T(x, t). The function c(t) can then be determined approximately from (2.2). An 
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approximation x,!, j= 0, I,..., Iv, to an equidistributing mesh is determined by 
solving (2.3) by, e.g., Newton iteration. If, in particular, we approximate n:(~, l) by 
a piecewise linear function of x with respect to the mesh ,I:, i= 0, I,..., M, then 
T(x, t) is a piecewise quadratic function of X, and (2.3) can be solved for sj, 
j = 0, l,..., N, directly by the quadratic formula to give 

x/f = xp- I + 
21’ 

p + (/I* + 2qp’ 
j= 0, I,..., N, 

where 

(2.4a 1 

and i is such that T(xp- I) t) <.jc < T(xp, fj. 
The number of points, M, in the input mesh ~7, i = 0, I ,..., M, and, N, in the out- 

put mesh xj, j = 0, I,..., N, are not necessarily the same. This could be useful in 
situations where the function n(x, t) is known very precisely, e.g., M’(x, 0) can often 
be calculated exactly using the initial conditions of the associated partial differential 
equations. In this case, A4 can be determined so that the integrals in (2.1 j to (2.3) 
and the equidistributing mesh can be evaluated to a prescribed level of accuracy. 
For example, if the trapezoidal rule is used to approximate T(x, r), an 
approximation of the equidistributing mesh x.J t), j = 0, 1, 2 ,..., IV, can be determined 
to tolerance c by selecting 

when \c(x, t) > 0. This estimate is obtained from standard error formulae for the 
trapezoidal rule and elementary continuity arguments. 

When N= M we may think of solving (2.1) to (2.3) iteratively. Thus, the mesh 
x;, j=o, 1 ,..., Iv, can be used to calculate a new piecewise polynomial 
approximation to MJ(X, t) and this can be used to calculate another approximation 
xf, j = 0, l,..., N, to an equidistributing mesh, etc. However, this iterative strategy 
does not necessarily converge near a local minimum of \t’(~~ f) as illustrated by the 
following simple example. 

EXAMPLE 2.1. Consider a three-point mesh (A&= W= 3 ), x;, j= 0, 1, 2, 03 
- 1 d x < 1 with w’(x, t) = x2. The endpoints x0 = - 1 and .x2 = 1 are fixed, and the 
only point that needs to be determined by iteration is x,. The exact value of X! is, 
of course, zero; however, we start with an initial guess .$ = E, use piecewise lirrear 
approximations for ~1, and see if successive iterates ST, v = 1, 2,..,, converge to zero. 
We can show that: 
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(1) If ~=(:=2-& then xf”+l= -5 and xf”= t, v =O, I,... Thus, the 
iterative solution is a two-point limit cycle. 

(2) If E#O, then Ix’;1 <i;, v= 1, 2 ,.... 
(3) If Ix;‘1 <<, then Ix;1 < (x;+‘J. 
(4) If x;>O then x;+‘<O. 

Items (2) to (4) imply that X; does not approach zero for any nonzero initial guess, 
but instead approaches a limit cycle, oscillating between i and -5 on alternate 
iterations. 

3. MESH DYNAMICS 

The discussion of Section 2 involved the computation of an equidistributing mesh 
at one time level. To obtain an equidistributing mesh at subsequent time levels, we 
can either (i) solve (2.3) simultaneously with the partial differential system, (ii) 
extrapolate equidistributing grids from previous time levels, or (iii) construct a dif- 
ferential equation, e.g., for the mesh velocities, whose solution is an equidistributing 
mesh. As previously noted, some extrapolation schemes and differential equations 
may be asymptotically equivalent for small time steps. In this section, we use linear 
stability analyses to explain why many researchers have been experiencing dif- 
ficulties with extrapolation procedures or in solving some differential equations for 
mesh velocities. There are no essential stability problems associated with solving 
(2.3) directly and the only possible objection to this approach is computational 
cost. 

We begin our analysis by considering the differential system obtained by differen- 
tiating (2.3 j with respect to time. Upon use of (2.1) this gives 

M’(Xj’ t) ii = - w~(.‘c, t) dx -j?(t) 1 , j= 1, 2 ,..., N- 1. (3.1) 

Suppose xj( f), j = 0, I,..., N, is an equidistributing mesh that exactly satisfies (2.3) 
and (3.1) for t>O and introduce a small perturbation 6xj(0), j=O, I,..., N, at t =0 
and study its effect on (3.1). If no additional errors are introduced, the perturbed 
system satisfies 

w(,t;.(t) + &xj(t), t)(ij + S.tj) = - j”‘“’ w,(x, t) d,x -if(r)], 
a 

j= 1, 2 ,..., N- 1, (3.2) 

and is subject to the constraints 8x,,(t) = 6x,(t) = 0. We further assume that Ic%x~/ < 
b - a, j = 1, 2 ,..., N- 1, and linearize (3.2) to get 

f [w(.q(t), t) 6+)] =o, j= 1, 2 )...) N- 1. (3.3) 
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Integrating, we find 

Therefore, the differential system (3.1) is stable to linear perturbations if 

L(t)= max 
“‘(Xi(O). oj 

O<j<N w(xj(t), t) 

is less than unity. Unfortunately, most choices of ~r(s, r) are likely to be decaying 
functions of time for dissipative parabolic systems and this will almost certainly 
yield a vaiue of L(t) that is larger than unity. Local instabilities can also occur 
whenever the mesh is moved so that L(t) exceeds unity for some specific times 
These instabilities may grow or decay as time progress’es depending on the v&e 
OfL. 

The following two examples illustrate some of the instabilities that can occur. 

EXAMPLE 3.1. Consider the heat conduction problem 

u, = u cs 2 o<s< 1. t>o, (3.h) 

u(.K, 0) = sin 1s~. u(0, t)=u(l. t)=O. (3.4b.c) 

The exact solution of this problem is 

We take 

Since this problem and ~(1, t) are separable, the correct strategy is to generate an 
equidistributed mesh at time t =0 and use it for all time. However, L(f) x 
exp(n’t/2) and, thus, we expect the solution of (3.1) to be unstable, In Fig. I, we dis- 
play the meshes produced by both (2.3) and (3. I ) and the unstable behavior of (3.1) 
is clearly visible. The trapezoidal rule with M= 100 was used to evaluate 41 
integrals, a mesh of N= 10 elements was equidistributed. and an initial pertur- 
bation &X,(O) = 0.0075, j = 1, 2,..., N- 1, was introduced. Equations (3.1) (and a!i 
differential equations appearing in Examples 3.2 to 3.4) were solved using the IMSL 
version of Gear’s code [ 121. 

EXAMPLE 3.2. We consider a problem for a partial differential equation that has 
the exact solution 

581 62 I-? 24(x, t)=tanh[r,(.u-1)+r2t], o<: Cl, r>O. , C, (3.?) 
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x 

FIG. 1. Mesh trajectories for Example 3.1 calculated by (2.3) (broken curve) and (3.1) (solid curve). 
An initial perturbation of 0.0075 was introduced in the solution of (3.1) and this causes an instability to 
develop. 
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FIG. 2. Mesh trajectories for Example 3.2 calculated by (2.3) (broken curve) and (3.1) (solid curve). 
An initial perturbation of 0.015 was introduced in the solution of (3.1). The solution of (3.1) is 
marginally stable for small times, but becomes unstable as ,I’ decreases with time. 
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The function (3.7) is a wave that travels in the negative x direction when rl and r2 
are positive. The values of r1 and r2 determine the steepness of the wave and its 
propagation speed. Such solutions could arise from several types of partial differen- 
tial equations, e.g., Davis and Flaherty [7] studied a heat conduction problem of 
the form 

u, +fcx, tj = (l/s) u,,, o<x< 1, t>o, (3.8) 

where the initial conditions, Dirichlet boundary conditions, constant diffusion l/s, 
and source ,f were chosen so that the exact solution was given by (3.7). 

The meshes produced by both (2.3) and (3.1) for y1 = r2 = 5 and 

bL’(X, t) = JIu,,(x, t)1 + rf, (3.9) 

where q = 0.1, are shown in Fig. 2. The solution of (3.1) is marginally stable for 
small times, but LV decreases as the wavefront progresses towards .X = 0 and the 
instability is apparent. In fact, some mesh trajectories have left the domain LO, 13. 
The trapezoidal rule with M= 100 was used to evaluate all integrals, a mesh of 
N= 10 elements was equidistributed, and an initial perturbation 6.u,(O) = 0.015, 
j = 1, 2,.... N- 1, was introduced. 

In order to indicate what could happen when extrapolation is used to advance a 
mesh, we solve this problem using (2.3) to equidistribute a mesh at two time levels 
and use linear extrapolation to advance it to a third time level. Thus, for uniform 
time steps, we compute 

3j(r+At)=2xi(t)-xj(t-At), j= 1, 2,..., A- 1, i3.!Q) 

where zj(t) is the extrapolated mesh position and .xj satisfies (2.3). Our results with 
M = N= 10 and a time step of At = 0.01 are compared with the exact solution of 
(2.3) in Fig. 3. The extrapolated solution follows the exact solution and oscillates 
about it for times less than unity. 

Petzold [ 191 suggested that the following linear combination of equations (2.3) 
and (3.1) might yield stable meshes with some improved dynamic behavior: 

c5j+mj=oo, j= 1, 2,..., N- 1. (3.1tj 

Here ,J> 0 is a parameter to be determined so that (3.11) is stable. A similar 
approach has been used by Holcomb and Hindman [14]. 

A linear stability analysis of (3.11) parallels the one used for (3.1) and in this 
case we find that Eq. (3.11 j is stable to small perturbations provided that 

L(t)dr< 1, (3.12) 

where L( t j was defined in (3.5). 
In practice (3.11) is solved numerically and its stability should be reexamined in 

this light. For example, if the explicit Euler method were used to solve (3.11 ). then 
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lo 

FIG. 3. Mesh trajectories for Example 3.2 calculated by (2.3) (broken curve) and linear extrapolation 
(solid curve). A mesh with IV= N= 10 was used in both cases. The extrapolated solution was obtained 
using a uniform time step of d/ = 0.01. 

IO 
x 

FIG. 4. Mesh trajectories for Example 3.3 calculated by (2.3) (broken curve) and (3.11) with 6 = 1 
(solid curve). An initial perturbation of 0.015 was introduced in the solution of (3.11). The solution 
obtained by (3.11) follows the exact solution reasonably closely and is not showing any signs of 
instability. 
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the appropriate stability condition is determined from (3.12) by replacing i by O* 
and expanding the left-hand side of (3.12) in a Taylor’s series to linear order in d:. 
Using (3.5) we get the following stability condition for the time step (r, t + At): 

This condition would be difficult to verify in practice. 

The following example illustrates the performance of (3.11). 

EXAMPLE 3.3. We solve (3.11) with i = 1 using (3.7) and (3.4) with the same 
parameter values as E,xample 3.2. This solution is compared with the solution of 
(2.3 j in Fig. 4. The mesh produced by integrating (3.11) is not showing any signs of 
instability. 

Exact values of 11’ and )v, were used to calculate the solution of (3.11) in the 
previous example. In practice these quantities would probably be approximated b; 
finite differences, and this could introduce some instabilities. A differential system 
that does not require a knowledge of )v~, seems to be less sensitive to perturbations 
in IS’, and has solutions that approximate those of (2.3) is 

2j(t) = 4cDj(Zj, t), j=l 3 , -r..., w- 1. _ (3.14’s 

If Qj(zi, tj is positive then zi(r) is too large relative to the equidistributing mesh 
sj(t ), and (3.14) will tend to reduce it when A > 0. Similarly, if Qj(zj, t) is negative 
then ~~(tj is smaller than .yj(t), and (3.14) will increase it. Furthermore. larger values 
of the parameter 1 will give shorter relaxation times of z-j to si; however. contrary 
to (3.1 j and (3.11), the equidistributing mesh ,yj is not a solution of (3.14). This 
strategy is similar to one suggested by Hyman and Naughton 11161. 

We again study the stability of this system with respect to linear perturbations, 
Thus, we let .u,(t). j= 0, l,..., N, be an equidistributing mesh, introduce a pertur- 
bation at time t = 0, replace zi(tj by ,x,(t) + &I~( r) in (3.14). use (2.3 j, and retain 
only Einear terms in 6~~ to get 

s.tj+ l”N(s,, t) 6s,= -*tj, j= 1, 2,..., N- 1. i3.15) 

This system may be easily integrated to give 

b.~Jr) = 6sj(0) exp 
L j 

-A -I w(zc,(s), s) cls 
0 1 

--[i,(sjexp[ -/:~:Iv(.x~(~), G)&]& j= 1,2,.... N-l. 13.16) 
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IsXj(t)l ,< IS,yj(o)l eXp(-J.W,int) + (-~,,~‘~~~,i,)[ 1 - exp( -A)ilmi,t)], 

j= 1, 2 . . . . . N- 1, (3.17a) 

where 

)t’,in = a ~~3 b ) ~l’(X, t) 1 3 r?, R,,, = 
o<r<m 

oF,$:y I-fj(t)l. (3.17b,c) 
o<r<;c 

Since -tmax is bounded (cf. (2.3)) and this, together with (3.17a), implies that the 
perturbations 6sj(t), j= 0, l,..., N, are bounded for 1 >O, but they do not 
necessarily decay to zero. If, e.g., the partial differential system is dissipative and 
bt’(x, t) -+ q as t + co, then .tj + 0, j=O, l,..., N, and the perturbations 6x,, 
j = 0, l,..., N, decay (cf. (3.16)). If this is not the case, then the bound on &T;(t), 

j= 0, l,..., N, can be made arbitrarily small by selecting 1 sufficiently large. This, 
however, will make the differential system (3.14) stiff. 

When (3.14) is solved numerically, it will have to satisfy any additional stability 

FIG. 5. Mesh trajectories for Example 3.4 calculated by (2.3) (broken curve) and (3.14) with /I = 1 
(solid curve). An initial perturbarion of 0.015 was introduced in the solution of (3.14). The solution 
obtained by (3.14) approaches the exact solution at a very slow rate. 
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FIG. 6. Mesh trajectories for Example 3.3 calculated by (2.3 ) t broken curve) and (3.13) with .;. = !G 
(solid curce). An initial perturbation of 0.015 aas introduced in the solution of i3.!1). The solution 
obtained by (3.14) approaches the exact solution more quick11 than when i = 1. 

requirements of the numerical integration technique. For example, if (3.14) is soived 
by the explicit Euler method, the stability restriction for the time step (i, i + AI) is 

This suggests that R should be kept relatively small; however, this is in conflict with 
the aim of selecting I, large in order to get quick decay of a trajectory te an 
equidistributing mesh. 

The following examples illustrate the performance of ( 3.14). 

EXAMPLE 3.4. We solve (3.14) using (3.7) and (3.9 j with the same parameter 
values as Example 3 .2. The solutions for A= 1 and 10 are compared with the 
solution of (2.3) in Figs. 5 and 6, respectively. The time for the solution of (,3.!4) to 
relax to the exact solution is much longer when j. = 1 than when A = 10. 

4. DISCUSSION 

We have explained why many intuitively obvious schemes for caicul.ating 
equidistributing meshes for time-dependent partial differential equations are 
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unstable. In particular, we have given a stability condition on the equidistribution 
density ~$3, t) that can easily be verified in practice. We have also suggested some 
methods of stabilizing unstable mesh-moving techniques. Specifically, the technique 
given by (3.14) seems to offer several advantages. It does not require knowledge nor 
continuity of k~‘, and it is stable for all positive values of the parameter 2. However. 
it is not asymptotically stable unless /z is large, and this introduces stiffness into 
(3.14). Thus, (3.11) may be preferable in those cases when precise mesh control is 
needed. 

We note, however, that it is rarely necessary to calculate an equidistributing 
mesh very precisely. An O( l/N) error in the location of the optimal equidistributing 
mesh will typically affect accuracy of the solution of the partial differential 
equations by 0( l/N’) (cf. Babuska and Rheinboldt [4]). Thus, it is preferable to 
add finite difference cells or finite elements and reduce the magnitude of the error 
rather than devoting time to solving the equidistribution problem to great 
precision. If MJ(S, t) is chosen so that the local discretization error is equidistributed, 
then refinement, when necessary, is done globally on [a, b]. This strategy should be 
simpler to implement than some local refinement finite difference and finite element 
methods (cf. Berger and Oliger [6] and Flaherty and Moore [ll]. respectively) 
which do not move meshes and use relatively sophisticated tree-structured grids. 
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